jueves, 24 de junio de 2010
GLUCONEOGENESIS
La gluconeogénesis es una ruta metabólica anabólica que permite la síntesis de glucosa a partir de precursores no glucídicos. Incluye la utilización de varios aminoácidos, lactato, piruvato, glicerol y cualquiera de los intermediarios del ciclo de los ácidos tricarboxílicos (o ciclo de Krebs) como fuentes de carbono para la vía metabólica. Todos los aminoácidos, excepto la leucina y la lisina, pueden suministrar carbono para la síntesis de glucosa.
Algunos tejidos, como el cerebro, los eritrocitos, el riñón, la córnea del ojo y el músculo, cuando el individuo realiza actividad extenuante, requieren de un aporte continuo de glucosa, obteniéndola a partir del glucógeno proveniente del hígado, el cual solo puede satisfacer estas necesidades durante 10 a 18 horas como máximo, lo que tarda en agotarse el glucógeno almacenado en el hígado. Posteriormente comienza la formación de glucosa a partir de sustratos diferentes al glucógeno.
La gluconeogénesis tiene lugar casi exclusivamente en el hígado (10% en los riñones). Es un proceso clave pues permite a los organismos superiores obtener glucosa en estados metabólicos como el ayuno.
Reacciones de la gluconeogénesis
Las enzimas que participan en la vía glucolítica participan también en la gluconeogénesis; ambas rutas se diferencian por tres reacciones irreversibles que utilizan enzimas específicas de este proceso y que condicionan los dos rodeos metabólicos de esta vía.
Estas reacciones son:
1. De glucosa a glucosa-6P.
2. De fructosa-6P a fructosa-1,6-bisfosfato.
3. De fosfoenolpiruvato a piruvato
Balance energético
Hemos resaltado que las rutas catabólicas generan energía, mientras que las anabólicas comportan un coste energético. En el caso de la gluconeogénesis podemos calcular este coste; la síntesis de glucosa es costosa para la célula en un sentido energético. Si partimos desde piruvato se consumen seis grupos fosfato de energía elevada 4 ATP (debido a las reacciones de la piruvato carboxilasa y a la de fosfoglicerato quinasa) y 2 GTP (consecuencia de la descarboxilación del oxalacetato), así como 2 de NADH, que es el equivalente energético de otros 5 ATP (ya que la oxidación mitocondrial de 1 NADH genera 2,5 ATP).
En cambio, si la glucólisis pudiera actuar en sentido inverso, el gasto de energía sería mucho menor: 2 NADH y 2 ATP
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario